Being an Synthetic Organic Chemist, I spent the past weeks synthesizing several compounds and here's the analysis:
A. Determine the Empirical Formulae:

1.	H	2.055%	S	32.70%

2. $\mathrm{C} \quad 59.96 \% \quad \mathrm{H} \quad 13.42 \%$
3. A 3.450 g of a sample of nitrogen reacts with 1.970 g of Oxygen.
4. An organic chemical gives the following analysis: 5.667 g Carbon $\quad 0.3165 \mathrm{~g}$ Hydrogen $\quad 5.566 \mathrm{~g}$ Chlorine
5. $\mathrm{Cu} \quad 66.75 \% \quad \mathrm{P} \quad 10.84 \%$
6. A compound containing only Carbon, Hydrogen and Oxygen gives the following analysis:

C $40.00 \% \quad$ H $6.700 \% 995$
The Molar Mass is between 115 and $125 \mathrm{~g} /$ mole. What is the Empirical and Molecular formulae.
7. An organic compound containing only $\mathrm{C}, \mathrm{H}, \mathrm{N}$ and O has the following analysis

C $\quad 49.47 \% \quad$ H $\quad 5.191 \% \quad$ N $\quad 28.86 \%$
The approximate molar mass is 194. What is the Empirical and Molecular formulae.

ANSWERS

| 1. | H | 2.055% | $2.055 \mathrm{~g} / 1.008 \mathrm{~g} / \mathrm{M}=2.039 \mathrm{M}$ | $2.039 \mathrm{M} / 1.020 \mathrm{M}=1.999$ | $=2$ |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| | S | 32.70% | $32.70 \mathrm{~g} / 32.07 \mathrm{~g} / \mathrm{M}=1.020 \mathrm{M}$ | $1.020 \mathrm{M} / 1.020 \mathrm{M}=1$ | $=1$ |
| | O | 65.25% | $65.25 \mathrm{~g} / 16.00 \mathrm{~g} / \mathrm{M}=4.078 \mathrm{M}$ | $4.078 \mathrm{M} / 1.020 \mathrm{M}=3.998$ | $=4$ |
| | | | | | $\mathbf{H}_{\mathbf{2}} \mathbf{S O}_{\mathbf{4}}$ |
| | | | | | |
| 2. | C | 59.96% | $59.96 \mathrm{~g} / 12.01 \mathrm{~g} / \mathrm{M}=4.993 \mathrm{M}$ | $4.993 \mathrm{M} / 1.664 \mathrm{M}=3.001$ | $=3$ |
| | H | 13.42% | $13.42 \mathrm{~g} / 1.008 \mathrm{~g} / \mathrm{M}=13.31 \mathrm{M}$ | $13.31 \mathrm{M} / 1.664 \mathrm{M}=7.999$ | $=8$ |
| | O | 26.62% | $26.62 \mathrm{~g} / 16.00 \mathrm{~g} / \mathrm{M}=1.664 \mathrm{M}$ | $1.664 \mathrm{M} / 1.664 \mathrm{M}=1$ | $=1$ |
| | | Isopropyl Alcohol / Rubbing Alcohol $=\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2} \mathrm{OH}=$ | $\mathbf{C}_{\mathbf{3}} \mathbf{H}_{\mathbf{8}} \mathbf{O}$ | | |

3. A 3.450 g of a sample of nitrogen reacts with 1.970 g of Oxygen.
3.450 g N
1.970 g O
$3.450 \mathrm{~g} / 14.01 \mathrm{~g} / \mathrm{M}=0.2463 \mathrm{M}$
$0.2463 \mathrm{M} / 0.1231 \mathrm{M}=2.001$
1.970 g O
$1.970 \mathrm{~g} / 16.00 \mathrm{~g} / \mathrm{M}=0.1231 \mathrm{M}$
$0.1231 \mathrm{M} / 0.1231 \mathrm{M}=1$
$\mathrm{N}_{2} \mathrm{O}$
4. An organic chemical gives the following analysis:

5.667 g Carbon	$5.667 \mathrm{~g} / 12.01 \mathrm{~g} / \mathrm{M}=0.4719 \mathrm{M}$	$0.4719 \mathrm{M} / 0.1570 \mathrm{M}=3.006$
0.3165 g Hydrogen	$0.3165 \mathrm{~g} / 1.008 \mathrm{~g} / \mathrm{M}=0.3140 \mathrm{M}$	$0.3140 \mathrm{M} / 0.1570 \mathrm{M}=2$
5.566 g Chlorine	$5.566 \mathrm{~g} / 35.45 \mathrm{~g} / \mathrm{M}=0.1570 \mathrm{M}$	$0.1570 \mathrm{M} / 0.1570 \mathrm{M}=1$
	Ethyl Chloride $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{Cl}$	$\mathbf{C}_{\mathbf{3}} \mathbf{H}_{\mathbf{2}} \mathbf{C l}$

5. $\mathrm{Cu} \quad 66.75 \% \quad 66.75 \mathrm{~g} / 63.55 \mathrm{~g} / \mathrm{M}=1.050 \mathrm{M} \quad 1.050 \mathrm{M} / 0.3500 \mathrm{M}=3$
$\mathrm{P} \quad 10.84 \% \quad 10.84 \mathrm{~g} / 30.97 \mathrm{~g} / \mathrm{M}=0.3500 \mathrm{M} \quad 0.3500 \mathrm{M} / 0.3500 \mathrm{M}=1$

O $\quad 22.41 \% \quad 22.41 \mathrm{~g} / 16.00 \mathrm{~g} / \mathrm{M}=1.401 \mathrm{M} \quad 1.401 \mathrm{M} / 0.3500 \mathrm{M}=4.003$
$\mathrm{Cu}_{3} \mathrm{PO}_{4}$
6. A compound containing only Carbon, Hydrogen and Oxygen gives the following analysis:

C	40.00%	$40.00 \mathrm{~g} / 12.01 \mathrm{~g} / \mathrm{M}=3.331 \mathrm{M}$	$3.331 \mathrm{M} / 3.331 \mathrm{M}=1$
H	6.700%	$6.700 \mathrm{~g} / 1.008 \mathrm{~g} / \mathrm{M}=6.647 \mathrm{M}$	$6.647 \mathrm{M} / 3.331 \mathrm{M}=1.995$
O	$100 \%-40.00 \%-6.700 \%=59.33 \% \mathrm{O}$		
		$53.30 \mathrm{~g} / 16.00 \mathrm{~g} / \mathrm{M}=3.331 \mathrm{M}$	$3.331 \mathrm{M} / 3.331 \mathrm{M}=1$
			$\mathbf{C}_{\mathbf{1}} \mathbf{H}_{\mathbf{2}} \mathbf{O}$

$\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{O}_{1}=12.01+2 * 1.008+16.00=30.03 \mathrm{~g} / \mathrm{M}$
The Molar Mass is between 115 and $125 \mathrm{~g} / \mathrm{mole}$. What is the Empirical and Molecular formulae.
$2 * 30.03=30.06$
$3 * 30.03=90.09$
$\underline{4 * 30.03=120.12} \quad 4 * \mathrm{C}_{1} \mathrm{H}_{2} \mathrm{O}_{1=} \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4}$
7. An organic compound containing only $\mathrm{C}, \mathrm{H}, \mathrm{N}$ and O has the following analysis

C	49.47%	$49.47 \mathrm{~g} / 12.01 \mathrm{~g} / \mathrm{M}=4.119 \mathrm{M}$	$4.119 \mathrm{M} / 1.03 \mathrm{M}=3.999$
H	5.191%	$5.191 \mathrm{~g} / 1.008 \mathrm{~g} / \mathrm{M}=5.149 \mathrm{M}$	$5.149 \mathrm{M} / 1.03 \mathrm{M}=4.999$
N	28.86%	$28.86 \mathrm{~g} / 14.01 \mathrm{~g} / \mathrm{M}=2.060 \mathrm{M}$	$2.060 \mathrm{M} / 1.03 \mathrm{M}=2$
O	$100 \%-49.47 \%-5.191 \%-28.86 \%=16.48 \% \mathrm{O}$		
	$16.48 \mathrm{~g} / 16.00 \mathrm{~g} / \mathrm{M}=1.03 \mathrm{M}$	$1.03 \mathrm{M} / 1.03 \mathrm{M}=1$	
			$\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}$

$\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}=4 * 12.01+5 * 1.008+2 * 14.01+16.00=90.09$
The approximate molar mass is 194. What is the Empirical and Molecular formulae.

$$
2 * 90.09=192.18 \quad \mathbf{2} \mathbf{C}_{\mathbf{4}} \mathbf{H}_{\mathbf{5}} \mathbf{N}_{\mathbf{2}} \mathrm{O}=\mathbf{C}_{\mathbf{8}} \mathbf{H}_{\mathbf{1 0}} \mathbf{N}_{\mathbf{4}} \mathbf{O}
$$

